On q-integrals over order polytopes (extended abstract)
Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020) Cet article a éte moissonné depuis la source Episciences

Voir la notice de l'article

A q-integral over an order polytope coming from a poset is interpreted as a generating function of linear extensions of the poset. As an application, theq-beta integral and aq-analog of Dirichlet’s integral are computed. A combinatorial interpretation of aq-Selberg integral is also obtained.
@article{DMTCS_2020_special_379_a95,
     author = {Kim, Jang Soo},
     title = {On q-integrals over order polytopes (extended abstract)},
     journal = {Discrete mathematics & theoretical computer science},
     year = {2020},
     volume = {DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)},
     doi = {10.46298/dmtcs.6413},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6413/}
}
TY  - JOUR
AU  - Kim, Jang Soo
TI  - On q-integrals over order polytopes (extended abstract)
JO  - Discrete mathematics & theoretical computer science
PY  - 2020
VL  - DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6413/
DO  - 10.46298/dmtcs.6413
LA  - en
ID  - DMTCS_2020_special_379_a95
ER  - 
%0 Journal Article
%A Kim, Jang Soo
%T On q-integrals over order polytopes (extended abstract)
%J Discrete mathematics & theoretical computer science
%D 2020
%V DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6413/
%R 10.46298/dmtcs.6413
%G en
%F DMTCS_2020_special_379_a95
Kim, Jang Soo. On q-integrals over order polytopes (extended abstract). Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020). doi: 10.46298/dmtcs.6413

Cité par Sources :