Dual Immaculate Quasisymmetric Functions Expand Positively into Young Quasisymmetric Schur Functions
Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020).

Voir la notice de l'article provenant de la source Episciences

We describe a combinatorial formula for the coefficients when the dual immaculate quasisymmetric func- tions are decomposed into Young quasisymmetric Schur functions. We prove this using an analogue of Schensted insertion. We also provide a Remmel-Whitney style rule to generate these coefficients algorithmically.
@article{DMTCS_2020_special_379_a92,
     author = {Allen, Edward and Hallam, Joshua and Mason, Sarah},
     title = {Dual {Immaculate} {Quasisymmetric} {Functions} {Expand} {Positively} into {Young} {Quasisymmetric} {Schur} {Functions}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)},
     year = {2020},
     doi = {10.46298/dmtcs.6410},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6410/}
}
TY  - JOUR
AU  - Allen, Edward
AU  - Hallam, Joshua
AU  - Mason, Sarah
TI  - Dual Immaculate Quasisymmetric Functions Expand Positively into Young Quasisymmetric Schur Functions
JO  - Discrete mathematics & theoretical computer science
PY  - 2020
VL  - DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6410/
DO  - 10.46298/dmtcs.6410
LA  - en
ID  - DMTCS_2020_special_379_a92
ER  - 
%0 Journal Article
%A Allen, Edward
%A Hallam, Joshua
%A Mason, Sarah
%T Dual Immaculate Quasisymmetric Functions Expand Positively into Young Quasisymmetric Schur Functions
%J Discrete mathematics & theoretical computer science
%D 2020
%V DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6410/
%R 10.46298/dmtcs.6410
%G en
%F DMTCS_2020_special_379_a92
Allen, Edward; Hallam, Joshua; Mason, Sarah. Dual Immaculate Quasisymmetric Functions Expand Positively into Young Quasisymmetric Schur Functions. Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020). doi : 10.46298/dmtcs.6410. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6410/

Cité par Sources :