Strong parity vertex coloring of plane graphs
Discrete mathematics & theoretical computer science, Tome 16 (2014) no. 1.

Voir la notice de l'article provenant de la source Episciences

A strong parity vertex coloring of a 2-connected plane graph is a coloring of the vertices such that every face is incident with zero or an odd number of vertices of each color. We prove that every 2-connected loopless plane graph has a strong parity vertex coloring with 97 colors. Moreover the coloring we construct is proper. This proves a conjecture of Czap and Jendrol' [Discuss. Math. Graph Theory 29 (2009), pp. 521-543.]. We also provide examples showing that eight colors may be necessary (ten when restricted to proper colorings).
@article{DMTCS_2014_16_1_a2,
     author = {Kaiser, Tomas and Rucky, Ondrej and Stehlik, Matej and Skrekovski, Riste},
     title = {Strong parity vertex coloring of plane graphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2014},
     doi = {10.46298/dmtcs.640},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.640/}
}
TY  - JOUR
AU  - Kaiser, Tomas
AU  - Rucky, Ondrej
AU  - Stehlik, Matej
AU  - Skrekovski, Riste
TI  - Strong parity vertex coloring of plane graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2014
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.640/
DO  - 10.46298/dmtcs.640
LA  - en
ID  - DMTCS_2014_16_1_a2
ER  - 
%0 Journal Article
%A Kaiser, Tomas
%A Rucky, Ondrej
%A Stehlik, Matej
%A Skrekovski, Riste
%T Strong parity vertex coloring of plane graphs
%J Discrete mathematics & theoretical computer science
%D 2014
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.640/
%R 10.46298/dmtcs.640
%G en
%F DMTCS_2014_16_1_a2
Kaiser, Tomas; Rucky, Ondrej; Stehlik, Matej; Skrekovski, Riste. Strong parity vertex coloring of plane graphs. Discrete mathematics & theoretical computer science, Tome 16 (2014) no. 1. doi : 10.46298/dmtcs.640. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.640/

Cité par Sources :