A bijection for nonorientable general maps
Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020).

Voir la notice de l'article provenant de la source Episciences

We give a different presentation of a recent bijection due to Chapuy and Dołe ̨ga for nonorientable bipartite quadrangulations and we extend it to the case of nonorientable general maps. This can be seen as a Bouttier–Di Francesco–Guitter-like generalization of the Cori–Vauquelin–Schaeffer bijection in the context of general nonori- entable surfaces. In the particular case of triangulations, the encoding objects take a particularly simple form and we recover a famous asymptotic enumeration formula found by Gao.
@article{DMTCS_2020_special_379_a80,
     author = {Bettinelli, J\'er\'emie},
     title = {A bijection for nonorientable general maps},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)},
     year = {2020},
     doi = {10.46298/dmtcs.6398},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6398/}
}
TY  - JOUR
AU  - Bettinelli, Jérémie
TI  - A bijection for nonorientable general maps
JO  - Discrete mathematics & theoretical computer science
PY  - 2020
VL  - DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6398/
DO  - 10.46298/dmtcs.6398
LA  - en
ID  - DMTCS_2020_special_379_a80
ER  - 
%0 Journal Article
%A Bettinelli, Jérémie
%T A bijection for nonorientable general maps
%J Discrete mathematics & theoretical computer science
%D 2020
%V DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6398/
%R 10.46298/dmtcs.6398
%G en
%F DMTCS_2020_special_379_a80
Bettinelli, Jérémie. A bijection for nonorientable general maps. Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020). doi : 10.46298/dmtcs.6398. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6398/

Cité par Sources :