The Prism tableau model for Schubert polynomials
Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020).

Voir la notice de l'article provenant de la source Episciences

The Schubert polynomials lift the Schur basis of symmetric polynomials into a basis for Z[x1; x2; : : :]. We suggest the prism tableau model for these polynomials. A novel aspect of this alternative to earlier results is that it directly invokes semistandard tableaux; it does so as part of a colored tableau amalgam. In the Grassmannian case, a prism tableau with colors ignored is a semistandard Young tableau. Our arguments are developed from the Gr¨obner geometry of matrix Schubert varieties.
@article{DMTCS_2020_special_379_a68,
     author = {Weigandt, Anna and Yong, Alexander},
     title = {The {Prism} tableau model for {Schubert} polynomials},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)},
     year = {2020},
     doi = {10.46298/dmtcs.6386},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6386/}
}
TY  - JOUR
AU  - Weigandt, Anna
AU  - Yong, Alexander
TI  - The Prism tableau model for Schubert polynomials
JO  - Discrete mathematics & theoretical computer science
PY  - 2020
VL  - DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6386/
DO  - 10.46298/dmtcs.6386
LA  - en
ID  - DMTCS_2020_special_379_a68
ER  - 
%0 Journal Article
%A Weigandt, Anna
%A Yong, Alexander
%T The Prism tableau model for Schubert polynomials
%J Discrete mathematics & theoretical computer science
%D 2020
%V DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6386/
%R 10.46298/dmtcs.6386
%G en
%F DMTCS_2020_special_379_a68
Weigandt, Anna; Yong, Alexander. The Prism tableau model for Schubert polynomials. Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020). doi : 10.46298/dmtcs.6386. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6386/

Cité par Sources :