McKay Centralizer Algebras
Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020).

Voir la notice de l'article provenant de la source Episciences

For a finite subgroup G of the special unitary group SU2, we study the centralizer algebra Zk(G) = EndG(V⊗k) of G acting on the k-fold tensor product of its defining representation V = C2. The McKay corre- spondence relates the representation theory of these groups to an associated affine Dynkin diagram, and we use this connection to study the structure and representation theory of Zk(G) via the combinatorics of the Dynkin diagram. When G equals the binary tetrahedral, octahedral, or icosahedral group, we exhibit remarkable connections between Zk (G) and the Martin-Jones set partition algebras.
@article{DMTCS_2020_special_379_a42,
     author = {Benkart, Georgia and Halverson, Tom},
     title = {McKay {Centralizer} {Algebras}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)},
     year = {2020},
     doi = {10.46298/dmtcs.6360},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6360/}
}
TY  - JOUR
AU  - Benkart, Georgia
AU  - Halverson, Tom
TI  - McKay Centralizer Algebras
JO  - Discrete mathematics & theoretical computer science
PY  - 2020
VL  - DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6360/
DO  - 10.46298/dmtcs.6360
LA  - en
ID  - DMTCS_2020_special_379_a42
ER  - 
%0 Journal Article
%A Benkart, Georgia
%A Halverson, Tom
%T McKay Centralizer Algebras
%J Discrete mathematics & theoretical computer science
%D 2020
%V DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6360/
%R 10.46298/dmtcs.6360
%G en
%F DMTCS_2020_special_379_a42
Benkart, Georgia; Halverson, Tom. McKay Centralizer Algebras. Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020). doi : 10.46298/dmtcs.6360. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6360/

Cité par Sources :