The Smith normal form distribution of a random integer matrix
Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020) Cet article a éte moissonné depuis la source Episciences

Voir la notice de l'article

We show that the density μ of the Smith normal form (SNF) of a random integer matrix exists and equals a product of densities μps of SNF over Z/psZ with p a prime and s some positive integer. Our approach is to connect the SNF of a matrix with the greatest common divisors (gcds) of certain polynomials of matrix entries, and develop the theory of multi-gcd distribution of polynomial values at a random integer vector. We also derive a formula for μps and determine the density μ for several interesting types of sets.
@article{DMTCS_2020_special_379_a34,
     author = {Wang, Yinghui and Stanley, Richard P.},
     title = {The {Smith} normal form distribution of a random integer matrix},
     journal = {Discrete mathematics & theoretical computer science},
     year = {2020},
     volume = {DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)},
     doi = {10.46298/dmtcs.6352},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6352/}
}
TY  - JOUR
AU  - Wang, Yinghui
AU  - Stanley, Richard P.
TI  - The Smith normal form distribution of a random integer matrix
JO  - Discrete mathematics & theoretical computer science
PY  - 2020
VL  - DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6352/
DO  - 10.46298/dmtcs.6352
LA  - en
ID  - DMTCS_2020_special_379_a34
ER  - 
%0 Journal Article
%A Wang, Yinghui
%A Stanley, Richard P.
%T The Smith normal form distribution of a random integer matrix
%J Discrete mathematics & theoretical computer science
%D 2020
%V DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6352/
%R 10.46298/dmtcs.6352
%G en
%F DMTCS_2020_special_379_a34
Wang, Yinghui; Stanley, Richard P. The Smith normal form distribution of a random integer matrix. Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020). doi: 10.46298/dmtcs.6352

Cité par Sources :