Cyclic inclusion-exclusion and the kernel of P -partitions
Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020).

Voir la notice de l'article provenant de la source Episciences

Following the lead of Stanley and Gessel, we consider a linear map which associates to an acyclic directed graph (or a poset) a quasi-symmetric function. The latter is naturally defined as multivariate generating series of non-decreasing functions on the graph (or of P -partitions of the poset).We describe the kernel of this linear map, using a simple combinatorial operation that we call cyclic inclusion- exclusion. Our result also holds for the natural non-commutative analog and for the commutative and non-commutative restrictions to bipartite graphs.
@article{DMTCS_2020_special_379_a26,
     author = {F\'eray, Valentin},
     title = {Cyclic inclusion-exclusion and the kernel of {P} -partitions},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)},
     year = {2020},
     doi = {10.46298/dmtcs.6344},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6344/}
}
TY  - JOUR
AU  - Féray, Valentin
TI  - Cyclic inclusion-exclusion and the kernel of P -partitions
JO  - Discrete mathematics & theoretical computer science
PY  - 2020
VL  - DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6344/
DO  - 10.46298/dmtcs.6344
LA  - en
ID  - DMTCS_2020_special_379_a26
ER  - 
%0 Journal Article
%A Féray, Valentin
%T Cyclic inclusion-exclusion and the kernel of P -partitions
%J Discrete mathematics & theoretical computer science
%D 2020
%V DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6344/
%R 10.46298/dmtcs.6344
%G en
%F DMTCS_2020_special_379_a26
Féray, Valentin. Cyclic inclusion-exclusion and the kernel of P -partitions. Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020). doi : 10.46298/dmtcs.6344. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6344/

Cité par Sources :