Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2020_special_379_a17, author = {Zheng, Hailun}, title = {The flag upper bound theorem for 3- and 5-manifolds}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)}, year = {2020}, doi = {10.46298/dmtcs.6335}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6335/} }
TY - JOUR AU - Zheng, Hailun TI - The flag upper bound theorem for 3- and 5-manifolds JO - Discrete mathematics & theoretical computer science PY - 2020 VL - DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6335/ DO - 10.46298/dmtcs.6335 LA - en ID - DMTCS_2020_special_379_a17 ER -
%0 Journal Article %A Zheng, Hailun %T The flag upper bound theorem for 3- and 5-manifolds %J Discrete mathematics & theoretical computer science %D 2020 %V DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6335/ %R 10.46298/dmtcs.6335 %G en %F DMTCS_2020_special_379_a17
Zheng, Hailun. The flag upper bound theorem for 3- and 5-manifolds. Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020). doi : 10.46298/dmtcs.6335. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6335/
Cité par Sources :