A non-partitionable Cohen–Macaulay simplicial complex
Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020).

Voir la notice de l'article provenant de la source Episciences

A long-standing conjecture of Stanley states that every Cohen–Macaulay simplicial complex is partition- able. We disprove the conjecture by constructing an explicit counterexample. Due to a result of Herzog, Jahan and Yassemi, our construction also disproves the conjecture that the Stanley depth of a monomial ideal is always at least its depth.
@article{DMTCS_2020_special_379_a7,
     author = {Duval, Art M. and Goeckner, Bennet and Klivans, Caroline J. and Martin, Jeremy},
     title = {A non-partitionable {Cohen{\textendash}Macaulay} simplicial complex},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)},
     year = {2020},
     doi = {10.46298/dmtcs.6325},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6325/}
}
TY  - JOUR
AU  - Duval, Art M.
AU  - Goeckner, Bennet
AU  - Klivans, Caroline J.
AU  - Martin, Jeremy
TI  - A non-partitionable Cohen–Macaulay simplicial complex
JO  - Discrete mathematics & theoretical computer science
PY  - 2020
VL  - DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6325/
DO  - 10.46298/dmtcs.6325
LA  - en
ID  - DMTCS_2020_special_379_a7
ER  - 
%0 Journal Article
%A Duval, Art M.
%A Goeckner, Bennet
%A Klivans, Caroline J.
%A Martin, Jeremy
%T A non-partitionable Cohen–Macaulay simplicial complex
%J Discrete mathematics & theoretical computer science
%D 2020
%V DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6325/
%R 10.46298/dmtcs.6325
%G en
%F DMTCS_2020_special_379_a7
Duval, Art M.; Goeckner, Bennet; Klivans, Caroline J.; Martin, Jeremy. A non-partitionable Cohen–Macaulay simplicial complex. Discrete mathematics & theoretical computer science, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016), DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) (2020). doi : 10.46298/dmtcs.6325. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6325/

Cité par Sources :