Certificate complexity and symmetry of nested canalizing functions
Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 3.

Voir la notice de l'article provenant de la source Episciences

Boolean nested canalizing functions (NCFs) have important applications in molecular regulatory networks, engineering and computer science. In this paper, we study their certificate complexity. For both Boolean values $b\in\{0,1\}$, we obtain a formula for $b$-certificate complexity and consequently, we develop a direct proof of the certificate complexity formula of an NCF. Symmetry is another interesting property of Boolean functions and we significantly simplify the proofs of some recent theorems about partial symmetry of NCFs. We also describe the algebraic normal form of $s$-symmetric NCFs. We obtain the general formula of the cardinality of the set of $n$-variable $s$-symmetric Boolean NCFs for $s=1,\dots,n$. In particular, we enumerate the strongly asymmetric Boolean NCFs.
DOI : 10.46298/dmtcs.6191
Classification : 68Q25, 94D10
@article{DMTCS_2021_23_3_a10,
     author = {Li, Yuan and Ingram, Frank and Zhang, Huaming},
     title = {Certificate complexity and symmetry of nested canalizing functions},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2021-2022},
     doi = {10.46298/dmtcs.6191},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6191/}
}
TY  - JOUR
AU  - Li, Yuan
AU  - Ingram, Frank
AU  - Zhang, Huaming
TI  - Certificate complexity and symmetry of nested canalizing functions
JO  - Discrete mathematics & theoretical computer science
PY  - 2021-2022
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6191/
DO  - 10.46298/dmtcs.6191
LA  - en
ID  - DMTCS_2021_23_3_a10
ER  - 
%0 Journal Article
%A Li, Yuan
%A Ingram, Frank
%A Zhang, Huaming
%T Certificate complexity and symmetry of nested canalizing functions
%J Discrete mathematics & theoretical computer science
%D 2021-2022
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6191/
%R 10.46298/dmtcs.6191
%G en
%F DMTCS_2021_23_3_a10
Li, Yuan; Ingram, Frank; Zhang, Huaming. Certificate complexity and symmetry of nested canalizing functions. Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 3. doi : 10.46298/dmtcs.6191. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6191/

Cité par Sources :