Determining Genus From Sandpile Torsor Algorithms
Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 1.

Voir la notice de l'article provenant de la source Episciences

We provide a pair of ribbon graphs that have the same rotor routing and Bernardi sandpile torsors, but different topological genus. This resolves a question posed by M. Chan [Cha]. We also show that if we are given a graph, but not its ribbon structure, along with the rotor routing sandpile torsors, we are able to determine the ribbon graph's genus.
DOI : 10.46298/dmtcs.6176
Classification : 05C10, 05C85
@article{DMTCS_2021_23_1_a0,
     author = {McDonough, Alex},
     title = {Determining {Genus} {From} {Sandpile} {Torsor} {Algorithms}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021-2022},
     doi = {10.46298/dmtcs.6176},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6176/}
}
TY  - JOUR
AU  - McDonough, Alex
TI  - Determining Genus From Sandpile Torsor Algorithms
JO  - Discrete mathematics & theoretical computer science
PY  - 2021-2022
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6176/
DO  - 10.46298/dmtcs.6176
LA  - en
ID  - DMTCS_2021_23_1_a0
ER  - 
%0 Journal Article
%A McDonough, Alex
%T Determining Genus From Sandpile Torsor Algorithms
%J Discrete mathematics & theoretical computer science
%D 2021-2022
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6176/
%R 10.46298/dmtcs.6176
%G en
%F DMTCS_2021_23_1_a0
McDonough, Alex. Determining Genus From Sandpile Torsor Algorithms. Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 1. doi : 10.46298/dmtcs.6176. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6176/

Cité par Sources :