Enumerating two permutation classes by the number of cycles
Discrete mathematics & theoretical computer science, Permutation Patterns 2019, Tome 22 (2020-2021) no. 2.

Voir la notice de l'article provenant de la source Episciences

We enumerate permutations in the two permutation classes $\text{Av}_n(312, 4321)$ and $\text{Av}_n(321, 4123)$ by the number of cycles each permutation admits. We also refine this enumeration with respect to several statistics.
DOI : 10.46298/dmtcs.6173
Classification : 05A10, 05A15
@article{DMTCS_2021_22_2_a10,
     author = {Archer, Kassie},
     title = {Enumerating two permutation classes by the number of cycles},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2020-2021},
     doi = {10.46298/dmtcs.6173},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6173/}
}
TY  - JOUR
AU  - Archer, Kassie
TI  - Enumerating two permutation classes by the number of cycles
JO  - Discrete mathematics & theoretical computer science
PY  - 2020-2021
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6173/
DO  - 10.46298/dmtcs.6173
LA  - en
ID  - DMTCS_2021_22_2_a10
ER  - 
%0 Journal Article
%A Archer, Kassie
%T Enumerating two permutation classes by the number of cycles
%J Discrete mathematics & theoretical computer science
%D 2020-2021
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6173/
%R 10.46298/dmtcs.6173
%G en
%F DMTCS_2021_22_2_a10
Archer, Kassie. Enumerating two permutation classes by the number of cycles. Discrete mathematics & theoretical computer science, Permutation Patterns 2019, Tome 22 (2020-2021) no. 2. doi : 10.46298/dmtcs.6173. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.6173/

Cité par Sources :