Two examples of Wilf-collapse
Discrete mathematics & theoretical computer science, Permutation Patterns 2019, Tome 22 (2020-2021) no. 2.

Voir la notice de l'article provenant de la source Episciences

Two permutation classes, the X-class and subpermutations of the increasing oscillation are shown to exhibit an exponential Wilf-collapse. This means that the number of distinct enumerations of principal subclasses of each of these classes grows much more slowly than the class itself whereas a priori, based only on symmetries of the class, there is no reason to expect this. The underlying cause of the collapse in both cases is the ability to apply some form of local symmetry which, combined with a greedy algorithm for detecting patterns in these classes, yields a Wilf-collapse.
@article{DMTCS_2021_22_2_a7,
     author = {Albert, Michael and Jel{\'\i}nek, V{\'\i}t and Opler, Michal},
     title = {Two examples of {Wilf-collapse}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2020-2021},
     doi = {10.46298/dmtcs.5986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5986/}
}
TY  - JOUR
AU  - Albert, Michael
AU  - Jelínek, Vít
AU  - Opler, Michal
TI  - Two examples of Wilf-collapse
JO  - Discrete mathematics & theoretical computer science
PY  - 2020-2021
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5986/
DO  - 10.46298/dmtcs.5986
LA  - en
ID  - DMTCS_2021_22_2_a7
ER  - 
%0 Journal Article
%A Albert, Michael
%A Jelínek, Vít
%A Opler, Michal
%T Two examples of Wilf-collapse
%J Discrete mathematics & theoretical computer science
%D 2020-2021
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5986/
%R 10.46298/dmtcs.5986
%G en
%F DMTCS_2021_22_2_a7
Albert, Michael; Jelínek, Vít; Opler, Michal. Two examples of Wilf-collapse. Discrete mathematics & theoretical computer science, Permutation Patterns 2019, Tome 22 (2020-2021) no. 2. doi : 10.46298/dmtcs.5986. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5986/

Cité par Sources :