Weak equivalence of higher-dimensional automata
Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 1.

Voir la notice de l'article provenant de la source Episciences

This paper introduces a notion of equivalence for higher-dimensional automata, called weak equivalence. Weak equivalence focuses mainly on a traditional trace language and a new homology language, which captures the overall independence structure of an HDA. It is shown that weak equivalence is compatible with both the tensor product and the coproduct of HDAs and that, under certain conditions, HDAs may be reduced to weakly equivalent smaller ones by merging and collapsing cubes.
DOI : 10.46298/dmtcs.5884
Classification : 68Q45
@article{DMTCS_2021_23_1_a10,
     author = {Kahl, Thomas},
     title = {Weak equivalence of higher-dimensional automata},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021-2022},
     doi = {10.46298/dmtcs.5884},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5884/}
}
TY  - JOUR
AU  - Kahl, Thomas
TI  - Weak equivalence of higher-dimensional automata
JO  - Discrete mathematics & theoretical computer science
PY  - 2021-2022
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5884/
DO  - 10.46298/dmtcs.5884
LA  - en
ID  - DMTCS_2021_23_1_a10
ER  - 
%0 Journal Article
%A Kahl, Thomas
%T Weak equivalence of higher-dimensional automata
%J Discrete mathematics & theoretical computer science
%D 2021-2022
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5884/
%R 10.46298/dmtcs.5884
%G en
%F DMTCS_2021_23_1_a10
Kahl, Thomas. Weak equivalence of higher-dimensional automata. Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 1. doi : 10.46298/dmtcs.5884. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5884/

Cité par Sources :