List-antimagic labeling of vertex-weighted graphs
Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 3.

Voir la notice de l'article provenant de la source Episciences

A graph $G$ is $k$-$weighted-list-antimagic$ if for any vertex weighting $\omega\colon V(G)\to\mathbb{R}$ and any list assignment $L\colon E(G)\to2^{\mathbb{R}}$ with $|L(e)|\geq |E(G)|+k$ there exists an edge labeling $f$ such that $f(e)\in L(e)$ for all $e\in E(G)$, labels of edges are pairwise distinct, and the sum of the labels on edges incident to a vertex plus the weight of that vertex is distinct from the sum at every other vertex. In this paper we prove that every graph on $n$ vertices having no $K_1$ or $K_2$ component is $\lfloor{\frac{4n}{3}}\rfloor$-weighted-list-antimagic. An oriented graph $G$ is $k$-$oriented-antimagic$ if there exists an injective edge labeling from $E(G)$ into $\{1,\dotsc,|E(G)|+k\}$ such that the sum of the labels on edges incident to and oriented toward a vertex minus the sum of the labels on edges incident to and oriented away from that vertex is distinct from the difference of sums at every other vertex. We prove that every graph on $n$ vertices with no $K_1$ component admits an orientation that is $\lfloor{\frac{2n}{3}}\rfloor$-oriented-antimagic.
DOI : 10.46298/dmtcs.5631
Classification : 05C78
@article{DMTCS_2021_23_3_a11,
     author = {Berikkyzy, Zhanar and Brandt, Axel and Jahanbekam, Sogol and Larsen, Victor and Rorabaugh, Danny},
     title = {List-antimagic labeling of vertex-weighted graphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2021-2022},
     doi = {10.46298/dmtcs.5631},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5631/}
}
TY  - JOUR
AU  - Berikkyzy, Zhanar
AU  - Brandt, Axel
AU  - Jahanbekam, Sogol
AU  - Larsen, Victor
AU  - Rorabaugh, Danny
TI  - List-antimagic labeling of vertex-weighted graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2021-2022
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5631/
DO  - 10.46298/dmtcs.5631
LA  - en
ID  - DMTCS_2021_23_3_a11
ER  - 
%0 Journal Article
%A Berikkyzy, Zhanar
%A Brandt, Axel
%A Jahanbekam, Sogol
%A Larsen, Victor
%A Rorabaugh, Danny
%T List-antimagic labeling of vertex-weighted graphs
%J Discrete mathematics & theoretical computer science
%D 2021-2022
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5631/
%R 10.46298/dmtcs.5631
%G en
%F DMTCS_2021_23_3_a11
Berikkyzy, Zhanar; Brandt, Axel; Jahanbekam, Sogol; Larsen, Victor; Rorabaugh, Danny. List-antimagic labeling of vertex-weighted graphs. Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 3. doi : 10.46298/dmtcs.5631. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5631/

Cité par Sources :