Anti-power $j$-fixes of the Thue-Morse word
Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 1.

Voir la notice de l'article provenant de la source Episciences

Recently, Fici, Restivo, Silva, and Zamboni introduced the notion of a $k$-anti-power, which is defined as a word of the form $w^{(1)} w^{(2)} \cdots w^{(k)}$, where $w^{(1)}, w^{(2)}, \ldots, w^{(k)}$ are distinct words of the same length. For an infinite word $w$ and a positive integer $k$, define $AP_j(w,k)$ to be the set of all integers $m$ such that $w_{j+1} w_{j+2} \cdots w_{j+km}$ is a $k$-anti-power, where $w_i$ denotes the $i$-th letter of $w$. Define also $\mathcal{F}_j(k) = (2 \mathbb{Z}^+ - 1) \cap AP_j(\mathbf{t},k)$, where $\mathbf{t}$ denotes the Thue-Morse word. For all $k \in \mathbb{Z}^+$, $\gamma_j(k) = \min (AP_j(\mathbf{t},k))$ is a well-defined positive integer, and for $k \in \mathbb{Z}^+$ sufficiently large, $\Gamma_j(k) = \sup ((2 \mathbb{Z}^+ -1) \setminus \mathcal{F}_j(k))$ is a well-defined odd positive integer. In his 2018 paper, Defant shows that $\gamma_0(k)$ and $\Gamma_0(k)$ grow linearly in $k$. We generalize Defant's methods to prove that $\gamma_j(k)$ and $\Gamma_j(k)$ grow linearly in $k$ for any nonnegative integer $j$. In particular, we show that $\displaystyle 1/10 \leq \liminf_{k \rightarrow \infty} (\gamma_j(k)/k) \leq 9/10$ and $\displaystyle 1/5 \leq \limsup_{k \rightarrow \infty} (\gamma_j(k)/k) \leq 3/2$. Additionally, we show that $\displaystyle \liminf_{k \rightarrow \infty} (\Gamma_j(k)/k) = 3/2$ and $\displaystyle \limsup_{k \rightarrow \infty} (\Gamma_j(k)/k) = 3$.
DOI : 10.46298/dmtcs.5483
Classification : 68R15
@article{DMTCS_2021_23_1_a2,
     author = {Gaetz, Marisa},
     title = {Anti-power $j$-fixes of the {Thue-Morse} word},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021-2022},
     doi = {10.46298/dmtcs.5483},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5483/}
}
TY  - JOUR
AU  - Gaetz, Marisa
TI  - Anti-power $j$-fixes of the Thue-Morse word
JO  - Discrete mathematics & theoretical computer science
PY  - 2021-2022
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5483/
DO  - 10.46298/dmtcs.5483
LA  - en
ID  - DMTCS_2021_23_1_a2
ER  - 
%0 Journal Article
%A Gaetz, Marisa
%T Anti-power $j$-fixes of the Thue-Morse word
%J Discrete mathematics & theoretical computer science
%D 2021-2022
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5483/
%R 10.46298/dmtcs.5483
%G en
%F DMTCS_2021_23_1_a2
Gaetz, Marisa. Anti-power $j$-fixes of the Thue-Morse word. Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 1. doi : 10.46298/dmtcs.5483. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5483/

Cité par Sources :