On the number of maximal independent sets in a graph
Discrete mathematics & theoretical computer science, Tome 13 (2011) no. 3.

Voir la notice de l'article provenant de la source Episciences

Combinatorics
@article{DMTCS_2011_13_3_a3,
     author = {Wood, David R.},
     title = {On the number of maximal independent sets in a graph},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2011},
     doi = {10.46298/dmtcs.543},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.543/}
}
TY  - JOUR
AU  - Wood, David R.
TI  - On the number of maximal independent sets in a graph
JO  - Discrete mathematics & theoretical computer science
PY  - 2011
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.543/
DO  - 10.46298/dmtcs.543
LA  - en
ID  - DMTCS_2011_13_3_a3
ER  - 
%0 Journal Article
%A Wood, David R.
%T On the number of maximal independent sets in a graph
%J Discrete mathematics & theoretical computer science
%D 2011
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.543/
%R 10.46298/dmtcs.543
%G en
%F DMTCS_2011_13_3_a3
Wood, David R. On the number of maximal independent sets in a graph. Discrete mathematics & theoretical computer science, Tome 13 (2011) no. 3. doi : 10.46298/dmtcs.543. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.543/

Cité par Sources :