Asymptotic results for silent elimination
Discrete mathematics & theoretical computer science, Tome 12 (2010) no. 2.

Voir la notice de l'article provenant de la source Episciences

Following the model of Bondesson, Nilsson, and Wikstrand, we consider randomly filled urns, where the probability of falling into urn i is the geometric probability (1-q)qi-1. Assuming n independent random entries, and a fixed parameter k, the interest is in the following parameters: Let T be the smallest index, such that urn T is non-empty, but the following k are empty, then: XT= number of balls in urn T, ST= number of balls in urns with index larger than T, and finally T itself..
@article{DMTCS_2010_12_2_a16,
     author = {Louchard, Guy and Prodinger, Helmut},
     title = {Asymptotic results for silent elimination},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2010},
     doi = {10.46298/dmtcs.527},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.527/}
}
TY  - JOUR
AU  - Louchard, Guy
AU  - Prodinger, Helmut
TI  - Asymptotic results for silent elimination
JO  - Discrete mathematics & theoretical computer science
PY  - 2010
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.527/
DO  - 10.46298/dmtcs.527
LA  - en
ID  - DMTCS_2010_12_2_a16
ER  - 
%0 Journal Article
%A Louchard, Guy
%A Prodinger, Helmut
%T Asymptotic results for silent elimination
%J Discrete mathematics & theoretical computer science
%D 2010
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.527/
%R 10.46298/dmtcs.527
%G en
%F DMTCS_2010_12_2_a16
Louchard, Guy; Prodinger, Helmut. Asymptotic results for silent elimination. Discrete mathematics & theoretical computer science, Tome 12 (2010) no. 2. doi : 10.46298/dmtcs.527. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.527/

Cité par Sources :