On the density of sets of the Euclidean plane avoiding distance 1
Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 1.

Voir la notice de l'article provenant de la source Episciences

A subset $A \subset \mathbb R^2$ is said to avoid distance $1$ if: $\forall x,y \in A, \left\| x-y \right\|_2 \neq 1.$ In this paper we study the number $m_1(\mathbb R^2)$ which is the supremum of the upper densities of measurable sets avoiding distance 1 in the Euclidean plane. Intuitively, $m_1(\mathbb R^2)$ represents the highest proportion of the plane that can be filled by a set avoiding distance 1. This parameter is related to the fractional chromatic number $\chi_f(\mathbb R^2)$ of the plane. We establish that $m_1(\mathbb R^2) \leq 0.25647$ and $\chi_f(\mathbb R^2) \geq 3.8991$.
DOI : 10.46298/dmtcs.5153
Classification : 05C12, 05C15, 52C20, 52C26
@article{DMTCS_2021_23_1_a18,
     author = {Bellitto, Thomas and P\^echer, Arnaud and S\'edillot, Antoine},
     title = {On the density of sets of the {Euclidean} plane avoiding distance 1},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021-2022},
     doi = {10.46298/dmtcs.5153},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5153/}
}
TY  - JOUR
AU  - Bellitto, Thomas
AU  - Pêcher, Arnaud
AU  - Sédillot, Antoine
TI  - On the density of sets of the Euclidean plane avoiding distance 1
JO  - Discrete mathematics & theoretical computer science
PY  - 2021-2022
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5153/
DO  - 10.46298/dmtcs.5153
LA  - en
ID  - DMTCS_2021_23_1_a18
ER  - 
%0 Journal Article
%A Bellitto, Thomas
%A Pêcher, Arnaud
%A Sédillot, Antoine
%T On the density of sets of the Euclidean plane avoiding distance 1
%J Discrete mathematics & theoretical computer science
%D 2021-2022
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5153/
%R 10.46298/dmtcs.5153
%G en
%F DMTCS_2021_23_1_a18
Bellitto, Thomas; Pêcher, Arnaud; Sédillot, Antoine. On the density of sets of the Euclidean plane avoiding distance 1. Discrete mathematics & theoretical computer science, Tome 23 (2021-2022) no. 1. doi : 10.46298/dmtcs.5153. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.5153/

Cité par Sources :