On certain non-unique solutions of the Stieltjes moment problem
Discrete mathematics & theoretical computer science, Tome 12 (2010) no. 2.

Voir la notice de l'article provenant de la source Episciences

We construct explicit solutions of a number of Stieltjes moment problems based on moments of the form ${\rho}_{1}^{(r)}(n)=(2rn)!$ and ${\rho}_{2}^{(r)}(n)=[(rn)!]^{2}$, $r=1,2,\dots$, $n=0,1,2,\dots$, \textit{i.e.} we find functions $W^{(r)}_{1,2}(x)>0$ satisfying $\int_{0}^{\infty}x^{n}W^{(r)}_{1,2}(x)dx = {\rho}_{1,2}^{(r)}(n)$. It is shown using criteria for uniqueness and non-uniqueness (Carleman, Krein, Berg, Pakes, Stoyanov) that for $r>1$ both ${\rho}_{1,2}^{(r)}(n)$ give rise to non-unique solutions. Examples of such solutions are constructed using the technique of the inverse Mellin transform supplemented by a Mellin convolution. We outline a general method of generating non-unique solutions for moment problems generalizing ${\rho}_{1,2}^{(r)}(n)$, such as the product ${\rho}_{1}^{(r)}(n)\cdot{\rho}_{2}^{(r)}(n)$ and $[(rn)!]^{p}$, $p=3,4,\dots$.
@article{DMTCS_2010_12_2_a11,
     author = {Penson, K. A. and Blasiak, Pawel and Duchamp, G\'erard and Horzela, A. and Solomon, A. I.},
     title = {On certain non-unique solutions of the {Stieltjes} moment problem},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2010},
     doi = {10.46298/dmtcs.507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.507/}
}
TY  - JOUR
AU  - Penson, K. A.
AU  - Blasiak, Pawel
AU  - Duchamp, Gérard
AU  - Horzela, A.
AU  - Solomon, A. I.
TI  - On certain non-unique solutions of the Stieltjes moment problem
JO  - Discrete mathematics & theoretical computer science
PY  - 2010
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.507/
DO  - 10.46298/dmtcs.507
LA  - en
ID  - DMTCS_2010_12_2_a11
ER  - 
%0 Journal Article
%A Penson, K. A.
%A Blasiak, Pawel
%A Duchamp, Gérard
%A Horzela, A.
%A Solomon, A. I.
%T On certain non-unique solutions of the Stieltjes moment problem
%J Discrete mathematics & theoretical computer science
%D 2010
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.507/
%R 10.46298/dmtcs.507
%G en
%F DMTCS_2010_12_2_a11
Penson, K. A.; Blasiak, Pawel; Duchamp, Gérard; Horzela, A.; Solomon, A. I. On certain non-unique solutions of the Stieltjes moment problem. Discrete mathematics & theoretical computer science, Tome 12 (2010) no. 2. doi : 10.46298/dmtcs.507. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.507/

Cité par Sources :