Asymptotic enumeration of orientations
Discrete mathematics & theoretical computer science, Tome 12 (2010) no. 2.

Voir la notice de l'article provenant de la source Episciences

We find the asymptotic number of 2-orientations of quadrangulations with n inner faces, and of 3-orientations of triangulations with n inner vertices. We also find the asymptotic number of prime 2-orientations (no separating quadrangle) and prime 3-orientations (no separating triangle). The estimates we find are of the form c . n(-alpha)gamma(n), for suitable constants c, alpha, gamma with alpha = 4 for 2-orientations and alpha = 5 for 3-orientations. The proofs are based on singularity analysis of D-finite generating functions, using the Fuchsian theory of complex linear differential equations.
@article{DMTCS_2010_12_2_a9,
     author = {Felsner, Stefan and Fusy, Eric and Noy, Marc},
     title = {Asymptotic enumeration of orientations},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2010},
     doi = {10.46298/dmtcs.505},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.505/}
}
TY  - JOUR
AU  - Felsner, Stefan
AU  - Fusy, Eric
AU  - Noy, Marc
TI  - Asymptotic enumeration of orientations
JO  - Discrete mathematics & theoretical computer science
PY  - 2010
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.505/
DO  - 10.46298/dmtcs.505
LA  - en
ID  - DMTCS_2010_12_2_a9
ER  - 
%0 Journal Article
%A Felsner, Stefan
%A Fusy, Eric
%A Noy, Marc
%T Asymptotic enumeration of orientations
%J Discrete mathematics & theoretical computer science
%D 2010
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.505/
%R 10.46298/dmtcs.505
%G en
%F DMTCS_2010_12_2_a9
Felsner, Stefan; Fusy, Eric; Noy, Marc. Asymptotic enumeration of orientations. Discrete mathematics & theoretical computer science, Tome 12 (2010) no. 2. doi : 10.46298/dmtcs.505. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.505/

Cité par Sources :