Asymptotics of the Stirling numbers of the first kind revisited: A saddle point approach
Discrete mathematics & theoretical computer science, Tome 12 (2010) no. 2.

Voir la notice de l'article provenant de la source Episciences

Using the saddle point method, we obtain from the generating function of the Stirling numbers of the first kind [n j] and Cauchy's integral formula, asymptotic results in central and non-central regions. In the central region, we revisit the celebrated Goncharov theorem with more precision. In the region j = n - n(alpha); alpha > 1/2, we analyze the dependence of [n j] on alpha.
@article{DMTCS_2010_12_2_a6,
     author = {Louchard, Guy},
     title = {Asymptotics of the {Stirling} numbers of the first kind revisited: {A} saddle point approach},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2010},
     doi = {10.46298/dmtcs.501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.501/}
}
TY  - JOUR
AU  - Louchard, Guy
TI  - Asymptotics of the Stirling numbers of the first kind revisited: A saddle point approach
JO  - Discrete mathematics & theoretical computer science
PY  - 2010
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.501/
DO  - 10.46298/dmtcs.501
LA  - en
ID  - DMTCS_2010_12_2_a6
ER  - 
%0 Journal Article
%A Louchard, Guy
%T Asymptotics of the Stirling numbers of the first kind revisited: A saddle point approach
%J Discrete mathematics & theoretical computer science
%D 2010
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.501/
%R 10.46298/dmtcs.501
%G en
%F DMTCS_2010_12_2_a6
Louchard, Guy. Asymptotics of the Stirling numbers of the first kind revisited: A saddle point approach. Discrete mathematics & theoretical computer science, Tome 12 (2010) no. 2. doi : 10.46298/dmtcs.501. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.501/

Cité par Sources :