The absence of a pattern and the occurrences of another
Discrete mathematics & theoretical computer science, Tome 12 (2010) no. 2.

Voir la notice de l'article provenant de la source Episciences

Following a question of J. Cooper, we study the expected number of occurrences of a given permutation pattern q in permutations that avoid another given pattern r. In some cases, we find the pattern that occurs least often, (resp. most often) in all r-avoiding permutations. We also prove a few exact enumeration formulae, some of which are surprising.
@article{DMTCS_2010_12_2_a4,
     author = {B\'ona, Mikl\'os},
     title = {The absence of a pattern and the occurrences of another},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2010},
     doi = {10.46298/dmtcs.496},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.496/}
}
TY  - JOUR
AU  - Bóna, Miklós
TI  - The absence of a pattern and the occurrences of another
JO  - Discrete mathematics & theoretical computer science
PY  - 2010
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.496/
DO  - 10.46298/dmtcs.496
LA  - en
ID  - DMTCS_2010_12_2_a4
ER  - 
%0 Journal Article
%A Bóna, Miklós
%T The absence of a pattern and the occurrences of another
%J Discrete mathematics & theoretical computer science
%D 2010
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.496/
%R 10.46298/dmtcs.496
%G en
%F DMTCS_2010_12_2_a4
Bóna, Miklós. The absence of a pattern and the occurrences of another. Discrete mathematics & theoretical computer science, Tome 12 (2010) no. 2. doi : 10.46298/dmtcs.496. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.496/

Cité par Sources :