The expected number of inversions after n adjacent transpositions
Discrete mathematics & theoretical computer science, Tome 12 (2010) no. 2.

Voir la notice de l'article provenant de la source Episciences

We give a new expression for the expected number of inversions in the product of n random adjacent transpositions in the symmetric group S_{m+1}. We then derive from this expression the asymptotic behaviour of this number when n scales with m in various ways. Our starting point is an equivalence, due to Eriksson et al., with a problem of weighted walks confined to a triangular area of the plane.
@article{DMTCS_2010_12_2_a0,
     author = {Bousquet-M\'elou, Mireille},
     title = {The expected number of inversions after n adjacent transpositions},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2010},
     doi = {10.46298/dmtcs.478},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.478/}
}
TY  - JOUR
AU  - Bousquet-Mélou, Mireille
TI  - The expected number of inversions after n adjacent transpositions
JO  - Discrete mathematics & theoretical computer science
PY  - 2010
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.478/
DO  - 10.46298/dmtcs.478
LA  - en
ID  - DMTCS_2010_12_2_a0
ER  - 
%0 Journal Article
%A Bousquet-Mélou, Mireille
%T The expected number of inversions after n adjacent transpositions
%J Discrete mathematics & theoretical computer science
%D 2010
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.478/
%R 10.46298/dmtcs.478
%G en
%F DMTCS_2010_12_2_a0
Bousquet-Mélou, Mireille. The expected number of inversions after n adjacent transpositions. Discrete mathematics & theoretical computer science, Tome 12 (2010) no. 2. doi : 10.46298/dmtcs.478. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.478/

Cité par Sources :