A construction of small regular bipartite graphs of girth 8
Discrete mathematics & theoretical computer science, Tome 11 (2009) no. 2.

Voir la notice de l'article provenant de la source Episciences

Let q be a prime a power and k an integer such that 3 ≤ k ≤ q. In this paper we present a method using Latin squares to construct adjacency matrices of k-regular bipartite graphs of girth 8 on 2(kq2 -- q) vertices. Some of these graphs have the smallest number of vertices among the known regular graphs with girth 8.
@article{DMTCS_2009_11_2_a10,
     author = {Balbuena, Camino},
     title = {A construction of small regular bipartite graphs of girth 8},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2009},
     doi = {10.46298/dmtcs.461},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.461/}
}
TY  - JOUR
AU  - Balbuena, Camino
TI  - A construction of small regular bipartite graphs of girth 8
JO  - Discrete mathematics & theoretical computer science
PY  - 2009
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.461/
DO  - 10.46298/dmtcs.461
LA  - en
ID  - DMTCS_2009_11_2_a10
ER  - 
%0 Journal Article
%A Balbuena, Camino
%T A construction of small regular bipartite graphs of girth 8
%J Discrete mathematics & theoretical computer science
%D 2009
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.461/
%R 10.46298/dmtcs.461
%G en
%F DMTCS_2009_11_2_a10
Balbuena, Camino. A construction of small regular bipartite graphs of girth 8. Discrete mathematics & theoretical computer science, Tome 11 (2009) no. 2. doi : 10.46298/dmtcs.461. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.461/

Cité par Sources :