Tiling a Pyramidal Polycube with Dominoes
Discrete mathematics & theoretical computer science, Tome 9 (2007) no. 2.

Voir la notice de l'article provenant de la source Episciences

The notion of pyramidal polycubes, namely the piling-up of bricks of a non-increasing size, generalizes in R^n the concept of trapezoidal polyominoes. In the present paper, we prove that n-dimensional dominoes can tile a pyramidal polycube if and only if the latter is balanced, that is, if the number of white cubes is equal to the number of black ones for a chessboard-like coloration, generalizing the result of [BC92] when n=2.
@article{DMTCS_2007_9_2_a15,
     author = {Bodini, Olivier and Jamet, Damien},
     title = {Tiling a {Pyramidal} {Polycube} with {Dominoes}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2007},
     doi = {10.46298/dmtcs.413},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.413/}
}
TY  - JOUR
AU  - Bodini, Olivier
AU  - Jamet, Damien
TI  - Tiling a Pyramidal Polycube with Dominoes
JO  - Discrete mathematics & theoretical computer science
PY  - 2007
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.413/
DO  - 10.46298/dmtcs.413
LA  - en
ID  - DMTCS_2007_9_2_a15
ER  - 
%0 Journal Article
%A Bodini, Olivier
%A Jamet, Damien
%T Tiling a Pyramidal Polycube with Dominoes
%J Discrete mathematics & theoretical computer science
%D 2007
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.413/
%R 10.46298/dmtcs.413
%G en
%F DMTCS_2007_9_2_a15
Bodini, Olivier; Jamet, Damien. Tiling a Pyramidal Polycube with Dominoes. Discrete mathematics & theoretical computer science, Tome 9 (2007) no. 2. doi : 10.46298/dmtcs.413. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.413/

Cité par Sources :