Gray code order for Lyndon words
Discrete mathematics & theoretical computer science, Tome 9 (2007) no. 2.

Voir la notice de l'article provenant de la source Episciences

At the 4th Conference on Combinatorics on Words, Christophe Reutenauer posed the question of whether the dual reflected order yields a Gray code on the Lyndon family. In this paper we give a positive answer. More precisely, we present an O(1)-average-time algorithm for generating length n binary pre-necklaces, necklaces and Lyndon words in Gray code order.
@article{DMTCS_2007_9_2_a5,
     author = {Vajnovszki, Vincent},
     title = {Gray code order for {Lyndon} words},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2007},
     doi = {10.46298/dmtcs.393},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.393/}
}
TY  - JOUR
AU  - Vajnovszki, Vincent
TI  - Gray code order for Lyndon words
JO  - Discrete mathematics & theoretical computer science
PY  - 2007
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.393/
DO  - 10.46298/dmtcs.393
LA  - en
ID  - DMTCS_2007_9_2_a5
ER  - 
%0 Journal Article
%A Vajnovszki, Vincent
%T Gray code order for Lyndon words
%J Discrete mathematics & theoretical computer science
%D 2007
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.393/
%R 10.46298/dmtcs.393
%G en
%F DMTCS_2007_9_2_a5
Vajnovszki, Vincent. Gray code order for Lyndon words. Discrete mathematics & theoretical computer science, Tome 9 (2007) no. 2. doi : 10.46298/dmtcs.393. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.393/

Cité par Sources :