Baire and automata
Discrete mathematics & theoretical computer science, Tome 9 (2007) no. 2.

Voir la notice de l'article provenant de la source Episciences

In his thesis Baire defined functions of Baire class 1. A function f is of Baire class 1 if it is the pointwise limit of a sequence of continuous functions. Baire proves the following theorem. A function f is not of class 1 if and only if there exists a closed nonempty set F such that the restriction of f to F has no point of continuity. We prove the automaton version of this theorem. An ω-rational function is not of class 1 if and only if there exists a closed nonempty set F recognized by a Büchi automaton such that the restriction of f to F has no point of continuity. This gives us the opportunity for a discussion on Hausdorff's analysis of Δ°2, ordinals, transfinite induction and some applications of computer science.
@article{DMTCS_2007_9_2_a4,
     author = {Simonnet, Pierre and Cagnard, Benoit},
     title = {Baire and automata},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2007},
     doi = {10.46298/dmtcs.392},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.392/}
}
TY  - JOUR
AU  - Simonnet, Pierre
AU  - Cagnard, Benoit
TI  - Baire and automata
JO  - Discrete mathematics & theoretical computer science
PY  - 2007
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.392/
DO  - 10.46298/dmtcs.392
LA  - en
ID  - DMTCS_2007_9_2_a4
ER  - 
%0 Journal Article
%A Simonnet, Pierre
%A Cagnard, Benoit
%T Baire and automata
%J Discrete mathematics & theoretical computer science
%D 2007
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.392/
%R 10.46298/dmtcs.392
%G en
%F DMTCS_2007_9_2_a4
Simonnet, Pierre; Cagnard, Benoit. Baire and automata. Discrete mathematics & theoretical computer science, Tome 9 (2007) no. 2. doi : 10.46298/dmtcs.392. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.392/

Cité par Sources :