NONCOMMUTATIVE SYMMETRIC FUNCTIONS ASSOCIATED WITH A CODE, LAZARD ELIMINATION, AND WITT VECTORS
Discrete mathematics & theoretical computer science, Tome 9 (2007) no. 2.

Voir la notice de l'article provenant de la source Episciences

The construction of the universal ring of Witt vectors is related to Lazard's factorizations of free monoids by means of a noncommutative analogue. This is done by associating to a code a specialization of noncommutative symmetric functions.
@article{DMTCS_2007_9_2_a0,
     author = {Luque, Jean-Gabriel and Thibon, Jean-Yves},
     title = {NONCOMMUTATIVE {SYMMETRIC} {FUNCTIONS} {ASSOCIATED} {WITH} {A} {CODE,} {LAZARD} {ELIMINATION,} {AND} {WITT} {VECTORS}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2007},
     doi = {10.46298/dmtcs.378},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.378/}
}
TY  - JOUR
AU  - Luque, Jean-Gabriel
AU  - Thibon, Jean-Yves
TI  - NONCOMMUTATIVE SYMMETRIC FUNCTIONS ASSOCIATED WITH A CODE, LAZARD ELIMINATION, AND WITT VECTORS
JO  - Discrete mathematics & theoretical computer science
PY  - 2007
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.378/
DO  - 10.46298/dmtcs.378
LA  - en
ID  - DMTCS_2007_9_2_a0
ER  - 
%0 Journal Article
%A Luque, Jean-Gabriel
%A Thibon, Jean-Yves
%T NONCOMMUTATIVE SYMMETRIC FUNCTIONS ASSOCIATED WITH A CODE, LAZARD ELIMINATION, AND WITT VECTORS
%J Discrete mathematics & theoretical computer science
%D 2007
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.378/
%R 10.46298/dmtcs.378
%G en
%F DMTCS_2007_9_2_a0
Luque, Jean-Gabriel; Thibon, Jean-Yves. NONCOMMUTATIVE SYMMETRIC FUNCTIONS ASSOCIATED WITH A CODE, LAZARD ELIMINATION, AND WITT VECTORS. Discrete mathematics & theoretical computer science, Tome 9 (2007) no. 2. doi : 10.46298/dmtcs.378. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.378/

Cité par Sources :