Generalized connected domination in graphs
Discrete mathematics & theoretical computer science, Tome 8 (2006).

Voir la notice de l'article provenant de la source Episciences

As a generalization of connected domination in a graph G we consider domination by sets having at most k components. The order γ _c^k (G) of such a smallest set we relate to γ _c(G), the order of a smallest connected dominating set. For a tree T we give bounds on γ _c^k (T) in terms of minimum valency and diameter. For trees the inequality γ _c^k (T)≤ n-k-1 is known to hold, we determine the class of trees, for which equality holds.
@article{DMTCS_2006_8_a14,
     author = {Kouider, Mekkia and Vestergaard, Preben Dahl},
     title = {Generalized connected domination in graphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {8},
     year = {2006},
     doi = {10.46298/dmtcs.373},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.373/}
}
TY  - JOUR
AU  - Kouider, Mekkia
AU  - Vestergaard, Preben Dahl
TI  - Generalized connected domination in graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2006
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.373/
DO  - 10.46298/dmtcs.373
LA  - en
ID  - DMTCS_2006_8_a14
ER  - 
%0 Journal Article
%A Kouider, Mekkia
%A Vestergaard, Preben Dahl
%T Generalized connected domination in graphs
%J Discrete mathematics & theoretical computer science
%D 2006
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.373/
%R 10.46298/dmtcs.373
%G en
%F DMTCS_2006_8_a14
Kouider, Mekkia; Vestergaard, Preben Dahl. Generalized connected domination in graphs. Discrete mathematics & theoretical computer science, Tome 8 (2006). doi : 10.46298/dmtcs.373. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.373/

Cité par Sources :