Deodhar Elements in Kazhdan-Lusztig Theory
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) (2008).

Voir la notice de l'article provenant de la source Episciences

The Kazhdan-Lusztig polynomials for finite Weyl groups arise in representation theory as well as the geometry of Schubert varieties. It was proved very soon after their introduction that they have nonnegative integer coefficients, but no simple all positive interpretation for them is known in general. Deodhar has given a framework, which generally involves recursion, to express the Kazhdan-Lusztig polynomials in a very attractive form. We use a new kind of pattern-avoidance that can be defined for general Coxeter groups to characterize when Deodhar's algorithm yields a non-recursive combinatorial formula for Kazhdan-Lusztig polynomials $P_{x,w}(q)$ of finite Weyl groups. This generalizes results of Billey-Warrington which identified the $321$-hexagon-avoiding permutations, and Fan-Green which identified the fully-tight Coxeter groups. We also show that the leading coefficient known as $\mu (x,w)$ for these Kazhdan―Lusztig polynomials is always either $0$ or $1$. Finally, we generalize the simple combinatorial formula for the Kazhdan―Lusztig polynomials of the $321$-hexagon-avoiding permutations to the case when $w$ is hexagon avoiding and maximally clustered.
@article{DMTCS_2008_special_255_a53,
     author = {Jones, Brant},
     title = {Deodhar {Elements} in {Kazhdan-Lusztig} {Theory}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)},
     year = {2008},
     doi = {10.46298/dmtcs.3645},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3645/}
}
TY  - JOUR
AU  - Jones, Brant
TI  - Deodhar Elements in Kazhdan-Lusztig Theory
JO  - Discrete mathematics & theoretical computer science
PY  - 2008
VL  - DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3645/
DO  - 10.46298/dmtcs.3645
LA  - en
ID  - DMTCS_2008_special_255_a53
ER  - 
%0 Journal Article
%A Jones, Brant
%T Deodhar Elements in Kazhdan-Lusztig Theory
%J Discrete mathematics & theoretical computer science
%D 2008
%V DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3645/
%R 10.46298/dmtcs.3645
%G en
%F DMTCS_2008_special_255_a53
Jones, Brant. Deodhar Elements in Kazhdan-Lusztig Theory. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) (2008). doi : 10.46298/dmtcs.3645. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3645/

Cité par Sources :