The first descent in samples of geometric random variables and permutations
Discrete mathematics & theoretical computer science, Tome 8 (2006).

Voir la notice de l'article provenant de la source Episciences

For words of length n, generated by independent geometric random variables, we study the average initial and end heights of the first descent in the word. In addition we compute the average initial and end height of the first descent for a random permutation of n letters.
@article{DMTCS_2006_8_a4,
     author = {Knopfmacher, Arnold and Prodinger, Helmut},
     title = {The first descent in samples of geometric random variables and permutations},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {8},
     year = {2006},
     doi = {10.46298/dmtcs.363},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.363/}
}
TY  - JOUR
AU  - Knopfmacher, Arnold
AU  - Prodinger, Helmut
TI  - The first descent in samples of geometric random variables and permutations
JO  - Discrete mathematics & theoretical computer science
PY  - 2006
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.363/
DO  - 10.46298/dmtcs.363
LA  - en
ID  - DMTCS_2006_8_a4
ER  - 
%0 Journal Article
%A Knopfmacher, Arnold
%A Prodinger, Helmut
%T The first descent in samples of geometric random variables and permutations
%J Discrete mathematics & theoretical computer science
%D 2006
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.363/
%R 10.46298/dmtcs.363
%G en
%F DMTCS_2006_8_a4
Knopfmacher, Arnold; Prodinger, Helmut. The first descent in samples of geometric random variables and permutations. Discrete mathematics & theoretical computer science, Tome 8 (2006). doi : 10.46298/dmtcs.363. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.363/

Cité par Sources :