The quasiinvariants of the symmetric group
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) (2008).

Voir la notice de l'article provenant de la source Episciences

For $m$ a non-negative integer and $G$ a Coxeter group, we denote by $\mathbf{QI_m}(G)$ the ring of $m$-quasiinvariants of $G$, as defined by Chalykh, Feigin, and Veselov. These form a nested series of rings, with $\mathbf{QI_0}(G)$ the whole polynomial ring, and the limit $\mathbf{QI}_{\infty}(G)$ the usual ring of invariants. Remarkably, the ring $\mathbf{QI_m}(G)$ is freely generated over the ideal generated by the invariants of $G$ without constant term, and the quotient is isomorphic to the left regular representation of $G$. However, even in the case of the symmetric group, no basis for $\mathbf{QI_m}(G)$ is known. We provide a new description of $\mathbf{QI_m}(S_n)$, and use this to give a basis for the isotypic component of $\mathbf{QI_m}(S_n)$ indexed by the shape $[n-1,1]$.
@article{DMTCS_2008_special_255_a27,
     author = {Bandlow, Jason and Musiker, Gregg},
     title = {The quasiinvariants of the symmetric group},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)},
     year = {2008},
     doi = {10.46298/dmtcs.3619},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3619/}
}
TY  - JOUR
AU  - Bandlow, Jason
AU  - Musiker, Gregg
TI  - The quasiinvariants of the symmetric group
JO  - Discrete mathematics & theoretical computer science
PY  - 2008
VL  - DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3619/
DO  - 10.46298/dmtcs.3619
LA  - en
ID  - DMTCS_2008_special_255_a27
ER  - 
%0 Journal Article
%A Bandlow, Jason
%A Musiker, Gregg
%T The quasiinvariants of the symmetric group
%J Discrete mathematics & theoretical computer science
%D 2008
%V DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3619/
%R 10.46298/dmtcs.3619
%G en
%F DMTCS_2008_special_255_a27
Bandlow, Jason; Musiker, Gregg. The quasiinvariants of the symmetric group. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) (2008). doi : 10.46298/dmtcs.3619. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3619/

Cité par Sources :