Invariant and coinvariant spaces for the algebra of symmetric polynomials in non-commuting variables
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) (2008).

Voir la notice de l'article provenant de la source Episciences

We analyze the structure of the algebra $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ of symmetric polynomials in non-commuting variables in so far as it relates to $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$, its commutative counterpart. Using the "place-action'' of the symmetric group, we are able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition of $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ analogous to the classical theorems of Chevalley, Shephard-Todd on finite reflection groups. In the case $|\mathbf{x}|= \infty$, our techniques simplify to a form readily generalized to many other familiar pairs of combinatorial Hopf algebras.
@article{DMTCS_2008_special_255_a14,
     author = {Bergeron, Fran\c{c}ois and Lauve, Aaron},
     title = {Invariant and coinvariant spaces for the algebra of symmetric polynomials in non-commuting variables},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)},
     year = {2008},
     doi = {10.46298/dmtcs.3606},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3606/}
}
TY  - JOUR
AU  - Bergeron, François
AU  - Lauve, Aaron
TI  - Invariant and coinvariant spaces for the algebra of symmetric polynomials in non-commuting variables
JO  - Discrete mathematics & theoretical computer science
PY  - 2008
VL  - DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3606/
DO  - 10.46298/dmtcs.3606
LA  - en
ID  - DMTCS_2008_special_255_a14
ER  - 
%0 Journal Article
%A Bergeron, François
%A Lauve, Aaron
%T Invariant and coinvariant spaces for the algebra of symmetric polynomials in non-commuting variables
%J Discrete mathematics & theoretical computer science
%D 2008
%V DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3606/
%R 10.46298/dmtcs.3606
%G en
%F DMTCS_2008_special_255_a14
Bergeron, François; Lauve, Aaron. Invariant and coinvariant spaces for the algebra of symmetric polynomials in non-commuting variables. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), DMTCS Proceedings vol. AJ, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) (2008). doi : 10.46298/dmtcs.3606. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3606/

Cité par Sources :