Branching processes in random environment die slowly
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science (2008).

Voir la notice de l'article provenant de la source Episciences

Let $Z_n,n=0,1,\ldots,$ be a branching process evolving in the random environment generated by a sequence of iid generating functions $f_0(s),f_1(s),\ldots,$ and let $S_0=0$, $S_k=X_1+ \ldots +X_k,k \geq 1$, be the associated random walk with $X_i=\log f_{i-1}^{\prime}(1), \tau (m,n)$ be the left-most point of minimum of $\{S_k,k \geq 0 \}$ on the interval $[m,n]$, and $T=\min \{ k:Z_k=0\}$. Assuming that the associated random walk satisfies the Doney condition $P(S_n > 0) \to \rho \in (0,1), n \to \infty$, we prove (under the quenched approach) conditional limit theorems, as $n \to \infty$, for the distribution of $Z_{nt}, Z_{\tau (0,nt)}$, and $Z_{\tau (nt,n)}, t \in (0,1)$, given $T=n$. It is shown that the form of the limit distributions essentially depends on the location of $\tau (0,n)$ with respect to the point $nt$.
@article{DMTCS_2008_special_254_a24,
     author = {Vatutin, Vladimir and Kyprianou, Andreas},
     title = {Branching processes in random environment die slowly},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science},
     year = {2008},
     doi = {10.46298/dmtcs.3578},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3578/}
}
TY  - JOUR
AU  - Vatutin, Vladimir
AU  - Kyprianou, Andreas
TI  - Branching processes in random environment die slowly
JO  - Discrete mathematics & theoretical computer science
PY  - 2008
VL  - DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3578/
DO  - 10.46298/dmtcs.3578
LA  - en
ID  - DMTCS_2008_special_254_a24
ER  - 
%0 Journal Article
%A Vatutin, Vladimir
%A Kyprianou, Andreas
%T Branching processes in random environment die slowly
%J Discrete mathematics & theoretical computer science
%D 2008
%V DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3578/
%R 10.46298/dmtcs.3578
%G en
%F DMTCS_2008_special_254_a24
Vatutin, Vladimir; Kyprianou, Andreas. Branching processes in random environment die slowly. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science (2008). doi : 10.46298/dmtcs.3578. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3578/

Cité par Sources :