An extremal problem on potentially K_p,1,1-graphic sequences
Discrete mathematics & theoretical computer science, Tome 7 (2005).

Voir la notice de l'article provenant de la source Episciences

A sequence S is potentially K_p,1,1 graphical if it has a realization containing a K_p,1,1 as a subgraph, where K_p,1,1 is a complete 3-partite graph with partition sizes p,1,1. Let σ (K_p,1,1, n) denote the smallest degree sum such that every n-term graphical sequence S with σ (S)≥ σ (K_p,1,1, n) is potentially K_p,1,1 graphical. In this paper, we prove that σ (K_p,1,1, n)≥ 2[((p+1)(n-1)+2)/2] for n ≥ p+2. We conjecture that equality holds for n ≥ 2p+4. We prove that this conjecture is true for p = 3. AMS Subject Classifications: 05C07, 05C35
@article{DMTCS_2005_7_a15,
     author = {Lai, Chunhui},
     title = {An extremal problem on potentially {K_p,1,1-graphic} sequences},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {7},
     year = {2005},
     doi = {10.46298/dmtcs.357},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.357/}
}
TY  - JOUR
AU  - Lai, Chunhui
TI  - An extremal problem on potentially K_p,1,1-graphic sequences
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.357/
DO  - 10.46298/dmtcs.357
LA  - en
ID  - DMTCS_2005_7_a15
ER  - 
%0 Journal Article
%A Lai, Chunhui
%T An extremal problem on potentially K_p,1,1-graphic sequences
%J Discrete mathematics & theoretical computer science
%D 2005
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.357/
%R 10.46298/dmtcs.357
%G en
%F DMTCS_2005_7_a15
Lai, Chunhui. An extremal problem on potentially K_p,1,1-graphic sequences. Discrete mathematics & theoretical computer science, Tome 7 (2005). doi : 10.46298/dmtcs.357. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.357/

Cité par Sources :