Evaluation of a Special Hankel Determinant of Binomial Coefficients
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science (2008).

Voir la notice de l'article provenant de la source Episciences

This paper makes use of the recently introduced technique of $\gamma$-operators to evaluate the Hankel determinant with binomial coefficient entries $a_k = (3 k)! / (2k)! k!$. We actually evaluate the determinant of a class of polynomials $a_k(x)$ having this binomial coefficient as constant term. The evaluation in the polynomial case is as an almost product, i.e. as a sum of a small number of products. The $\gamma$-operator technique to find the explicit form of the almost product relies on differential-convolution equations and establishes a second order differential equation for the determinant. In addition to $x=0$, product form evaluations for $x = \frac{3}{5}, \frac{3}{4}, \frac{3}{2}, 3$ are also presented. At $x=1$, we obtain another almost product evaluation for the Hankel determinant with $a_k = ( 3 k+1) ! / (2k+1)!k!$.
@article{DMTCS_2008_special_254_a15,
     author = {Eugeciouglu, \"Omer and Redmond, Timothy and Ryavec, Charles},
     title = {Evaluation of a {Special} {Hankel} {Determinant} of {Binomial} {Coefficients}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science},
     year = {2008},
     doi = {10.46298/dmtcs.3569},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3569/}
}
TY  - JOUR
AU  - Eugeciouglu, Ömer
AU  - Redmond, Timothy
AU  - Ryavec, Charles
TI  - Evaluation of a Special Hankel Determinant of Binomial Coefficients
JO  - Discrete mathematics & theoretical computer science
PY  - 2008
VL  - DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3569/
DO  - 10.46298/dmtcs.3569
LA  - en
ID  - DMTCS_2008_special_254_a15
ER  - 
%0 Journal Article
%A Eugeciouglu, Ömer
%A Redmond, Timothy
%A Ryavec, Charles
%T Evaluation of a Special Hankel Determinant of Binomial Coefficients
%J Discrete mathematics & theoretical computer science
%D 2008
%V DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3569/
%R 10.46298/dmtcs.3569
%G en
%F DMTCS_2008_special_254_a15
Eugeciouglu, Ömer; Redmond, Timothy; Ryavec, Charles. Evaluation of a Special Hankel Determinant of Binomial Coefficients. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science (2008). doi : 10.46298/dmtcs.3569. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3569/

Cité par Sources :