On the number of zero increments of random walks with a barrier
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science (2008).

Voir la notice de l'article provenant de la source Episciences

Continuing the line of research initiated in Iksanov and Möhle (2008) and Negadajlov (2008) we investigate the asymptotic (as $n \to \infty$) behaviour of $V_n$ the number of zero increments before the absorption in a random walk with the barrier $n$. In particular, when the step of the unrestricted random walk has a finite mean, we prove that the number of zero increments converges in distribution. We also establish a weak law of large numbers for $V_n$ under a regular variation assumption.
@article{DMTCS_2008_special_254_a14,
     author = {Iksanov, Alex and Negadajlov, Pavlo},
     title = {On the number of zero increments of random walks with a barrier},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science},
     year = {2008},
     doi = {10.46298/dmtcs.3568},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3568/}
}
TY  - JOUR
AU  - Iksanov, Alex
AU  - Negadajlov, Pavlo
TI  - On the number of zero increments of random walks with a barrier
JO  - Discrete mathematics & theoretical computer science
PY  - 2008
VL  - DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3568/
DO  - 10.46298/dmtcs.3568
LA  - en
ID  - DMTCS_2008_special_254_a14
ER  - 
%0 Journal Article
%A Iksanov, Alex
%A Negadajlov, Pavlo
%T On the number of zero increments of random walks with a barrier
%J Discrete mathematics & theoretical computer science
%D 2008
%V DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3568/
%R 10.46298/dmtcs.3568
%G en
%F DMTCS_2008_special_254_a14
Iksanov, Alex; Negadajlov, Pavlo. On the number of zero increments of random walks with a barrier. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science (2008). doi : 10.46298/dmtcs.3568. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3568/

Cité par Sources :