Some equinumerous pattern-avoiding classes of permutations
Discrete mathematics & theoretical computer science, Tome 7 (2005).

Voir la notice de l'article provenant de la source Episciences

Suppose that p,q,r,s are non-negative integers with m=p+q+r+s. The class X(p,q,r,s) of permutations that contain no pattern of the form α β γ where |α |=r, |γ |=s and β is any arrangement of \1,2,\ldots,p\∪ \m-q+1, m-q+2, \ldots,m\ is considered. A recurrence relation to enumerate the permutations of X(p,q,r,s) is established. The method of proof also shows that X(p,q,r,s)=X(p,q,1,0)X(1,0,r,s) in the sense of permutational composition.\par 2000 MATHEMATICS SUBJECT CLASSIFICATION: 05A05
@article{DMTCS_2005_7_a14,
     author = {Atkinson, M. D.},
     title = {Some equinumerous pattern-avoiding classes of permutations},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {7},
     year = {2005},
     doi = {10.46298/dmtcs.356},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.356/}
}
TY  - JOUR
AU  - Atkinson, M. D.
TI  - Some equinumerous pattern-avoiding classes of permutations
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.356/
DO  - 10.46298/dmtcs.356
LA  - en
ID  - DMTCS_2005_7_a14
ER  - 
%0 Journal Article
%A Atkinson, M. D.
%T Some equinumerous pattern-avoiding classes of permutations
%J Discrete mathematics & theoretical computer science
%D 2005
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.356/
%R 10.46298/dmtcs.356
%G en
%F DMTCS_2005_7_a14
Atkinson, M. D. Some equinumerous pattern-avoiding classes of permutations. Discrete mathematics & theoretical computer science, Tome 7 (2005). doi : 10.46298/dmtcs.356. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.356/

Cité par Sources :