The average position of the first maximum in a sample of geometric random variables
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07), DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07) (2007).

Voir la notice de l'article provenant de la source Episciences

We consider samples of n geometric random variables $(Γ _1, Γ _2, \dots Γ _n)$ where $\mathbb{P}\{Γ _j=i\}=pq^{i-1}$, for $1≤j ≤n$, with $p+q=1$. The parameter we study is the position of the first occurrence of the maximum value in a such a sample. We derive a probability generating function for this position with which we compute the first two (factorial) moments. The asymptotic technique known as Rice's method then yields the main terms as well as the Fourier expansions of the fluctuating functions arising in the expected value and the variance.
@article{DMTCS_2007_special_253_a5,
     author = {Archibald, Margaret and Knopfmacher, Arnold},
     title = {The average position of the first maximum in a sample of geometric random variables},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07)},
     year = {2007},
     doi = {10.46298/dmtcs.3523},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3523/}
}
TY  - JOUR
AU  - Archibald, Margaret
AU  - Knopfmacher, Arnold
TI  - The average position of the first maximum in a sample of geometric random variables
JO  - Discrete mathematics & theoretical computer science
PY  - 2007
VL  - DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3523/
DO  - 10.46298/dmtcs.3523
LA  - en
ID  - DMTCS_2007_special_253_a5
ER  - 
%0 Journal Article
%A Archibald, Margaret
%A Knopfmacher, Arnold
%T The average position of the first maximum in a sample of geometric random variables
%J Discrete mathematics & theoretical computer science
%D 2007
%V DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3523/
%R 10.46298/dmtcs.3523
%G en
%F DMTCS_2007_special_253_a5
Archibald, Margaret; Knopfmacher, Arnold. The average position of the first maximum in a sample of geometric random variables. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07), DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07) (2007). doi : 10.46298/dmtcs.3523. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3523/

Cité par Sources :