Queue Layouts of Graph Products and Powers
Discrete mathematics & theoretical computer science, Tome 7 (2005).

Voir la notice de l'article provenant de la source Episciences

A \emphk-queue layout of a graph G consists of a linear order σ of V(G), and a partition of E(G) into k sets, each of which contains no two edges that are nested in σ . This paper studies queue layouts of graph products and powers
@article{DMTCS_2005_7_a10,
     author = {Wood, David R.},
     title = {Queue {Layouts} of {Graph} {Products} and {Powers}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {7},
     year = {2005},
     doi = {10.46298/dmtcs.352},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.352/}
}
TY  - JOUR
AU  - Wood, David R.
TI  - Queue Layouts of Graph Products and Powers
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.352/
DO  - 10.46298/dmtcs.352
LA  - en
ID  - DMTCS_2005_7_a10
ER  - 
%0 Journal Article
%A Wood, David R.
%T Queue Layouts of Graph Products and Powers
%J Discrete mathematics & theoretical computer science
%D 2005
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.352/
%R 10.46298/dmtcs.352
%G en
%F DMTCS_2005_7_a10
Wood, David R. Queue Layouts of Graph Products and Powers. Discrete mathematics & theoretical computer science, Tome 7 (2005). doi : 10.46298/dmtcs.352. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.352/

Cité par Sources :