The first ascent of size $d$ or more in compositions
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities (2006) Cet article a éte moissonné depuis la source Episciences

Voir la notice de l'article

A composition of a positive integer $n$ is a finite sequence of positive integers $a_1, a_2, \ldots, a_k$ such that $a_1+a_2+ \cdots +a_k=n$. Let $d$ be a fixed nonnegative integer. We say that we have an ascent of size $d$ or more at position $i$, if $a_{i+1}\geq a_i+d$. We study the average position, initial height and end height of the first ascent of size $d$ or more in compositions of $n$ as $n \to \infty$.
@article{DMTCS_2006_special_252_a33,
     author = {Brennan, Charlotte and Knopfmacher, Arnold},
     title = {The first ascent of size $d$ or more in compositions},
     journal = {Discrete mathematics & theoretical computer science},
     year = {2006},
     volume = {DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities},
     doi = {10.46298/dmtcs.3509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3509/}
}
TY  - JOUR
AU  - Brennan, Charlotte
AU  - Knopfmacher, Arnold
TI  - The first ascent of size $d$ or more in compositions
JO  - Discrete mathematics & theoretical computer science
PY  - 2006
VL  - DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3509/
DO  - 10.46298/dmtcs.3509
LA  - en
ID  - DMTCS_2006_special_252_a33
ER  - 
%0 Journal Article
%A Brennan, Charlotte
%A Knopfmacher, Arnold
%T The first ascent of size $d$ or more in compositions
%J Discrete mathematics & theoretical computer science
%D 2006
%V DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3509/
%R 10.46298/dmtcs.3509
%G en
%F DMTCS_2006_special_252_a33
Brennan, Charlotte; Knopfmacher, Arnold. The first ascent of size $d$ or more in compositions. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities (2006). doi: 10.46298/dmtcs.3509

Cité par Sources :