Constrained exchangeable partitions
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities (2006).

Voir la notice de l'article provenant de la source Episciences

For a class of random partitions of an infinite set a de Finetti-type representation is derived, and in one special case a central limit theorem for the number of blocks is shown.
@article{DMTCS_2006_special_252_a3,
     author = {Gnedin, Alexander},
     title = {Constrained exchangeable partitions},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities},
     year = {2006},
     doi = {10.46298/dmtcs.3479},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3479/}
}
TY  - JOUR
AU  - Gnedin, Alexander
TI  - Constrained exchangeable partitions
JO  - Discrete mathematics & theoretical computer science
PY  - 2006
VL  - DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3479/
DO  - 10.46298/dmtcs.3479
LA  - en
ID  - DMTCS_2006_special_252_a3
ER  - 
%0 Journal Article
%A Gnedin, Alexander
%T Constrained exchangeable partitions
%J Discrete mathematics & theoretical computer science
%D 2006
%V DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3479/
%R 10.46298/dmtcs.3479
%G en
%F DMTCS_2006_special_252_a3
Gnedin, Alexander. Constrained exchangeable partitions. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities (2006). doi : 10.46298/dmtcs.3479. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3479/

Cité par Sources :