Tilings from some non-irreducible, Pisot substitutions
Discrete mathematics & theoretical computer science, Tome 7 (2005).

Voir la notice de l'article provenant de la source Episciences

A generating method of self-affine tilings for Pisot, unimodular, irreducible substitutions, as well as the fact that the associated substitution dynamical systems are isomorphic to rotations on the torus are established in P. Arnoux and S. Ito. The aim of this paper is to extend these facts in the case where the characteristic polynomial of a substitution is non-irreducible for a special class of substitutions on five letters. Finally we show that the substitution dynamical systems for this class are isomorphic to induced transformations of rotations on the torus.
@article{DMTCS_2005_7_a5,
     author = {Ito, Shunji and Ei, Hiromi},
     title = {Tilings from some non-irreducible, {Pisot} substitutions},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {7},
     year = {2005},
     doi = {10.46298/dmtcs.347},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.347/}
}
TY  - JOUR
AU  - Ito, Shunji
AU  - Ei, Hiromi
TI  - Tilings from some non-irreducible, Pisot substitutions
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.347/
DO  - 10.46298/dmtcs.347
LA  - en
ID  - DMTCS_2005_7_a5
ER  - 
%0 Journal Article
%A Ito, Shunji
%A Ei, Hiromi
%T Tilings from some non-irreducible, Pisot substitutions
%J Discrete mathematics & theoretical computer science
%D 2005
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.347/
%R 10.46298/dmtcs.347
%G en
%F DMTCS_2005_7_a5
Ito, Shunji; Ei, Hiromi. Tilings from some non-irreducible, Pisot substitutions. Discrete mathematics & theoretical computer science, Tome 7 (2005). doi : 10.46298/dmtcs.347. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.347/

Cité par Sources :