Classical Combinatory Logic
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AF, Computational Logic and Applications (CLA '05), DMTCS Proceedings vol. AF, Computational Logic and Applications (CLA '05) (2005).

Voir la notice de l'article provenant de la source Episciences

Combinatory logic shows that bound variables can be eliminated without loss of expressiveness. It has applications both in the foundations of mathematics and in the implementation of functional programming languages. The original combinatory calculus corresponds to minimal implicative logic written in a system "à la Hilbert''. We present in this paper a combinatory logic which corresponds to propositional classical logic. This system is equivalent to the system $λ ^{Sym}_{Prop}$ of Barbanera and Berardi.
@article{DMTCS_2005_special_251_a1,
     author = {Nour, Karim},
     title = {Classical {Combinatory} {Logic}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AF, Computational Logic and Applications (CLA '05)},
     year = {2005},
     doi = {10.46298/dmtcs.3469},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3469/}
}
TY  - JOUR
AU  - Nour, Karim
TI  - Classical Combinatory Logic
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AF, Computational Logic and Applications (CLA '05)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3469/
DO  - 10.46298/dmtcs.3469
LA  - en
ID  - DMTCS_2005_special_251_a1
ER  - 
%0 Journal Article
%A Nour, Karim
%T Classical Combinatory Logic
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AF, Computational Logic and Applications (CLA '05)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3469/
%R 10.46298/dmtcs.3469
%G en
%F DMTCS_2005_special_251_a1
Nour, Karim. Classical Combinatory Logic. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AF, Computational Logic and Applications (CLA '05), DMTCS Proceedings vol. AF, Computational Logic and Applications (CLA '05) (2005). doi : 10.46298/dmtcs.3469. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3469/

Cité par Sources :