On minimal blocking sets of the generalized quadrangle $Q(4, q)$
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005).

Voir la notice de l'article provenant de la source Episciences

The generalized quadrangle $Q(4,q)$ arising from the parabolic quadric in $PG(4,q)$ always has an ovoid. It is not known whether a minimal blocking set of size smaller than $q^2 + q$ (which is not an ovoid) exists in $Q(4,q)$, $q$ odd. We present results on smallest blocking sets in $Q(4,q)$, $q$ odd, obtained by a computer search. For $q = 5,7,9,11$ we found minimal blocking sets of size $q^2 + q - 2$ and we discuss their structure. By an exhaustive search we excluded the existence of a minimal blocking set of size $q^2 + 3$ in $Q(4,7)$.
@article{DMTCS_2005_special_250_a75,
     author = {Cimr\'akov\'a, Miroslava and Fack, Veerle},
     title = {On minimal blocking sets of the generalized quadrangle $Q(4, q)$},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)},
     year = {2005},
     doi = {10.46298/dmtcs.3466},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3466/}
}
TY  - JOUR
AU  - Cimráková, Miroslava
AU  - Fack, Veerle
TI  - On minimal blocking sets of the generalized quadrangle $Q(4, q)$
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3466/
DO  - 10.46298/dmtcs.3466
LA  - en
ID  - DMTCS_2005_special_250_a75
ER  - 
%0 Journal Article
%A Cimráková, Miroslava
%A Fack, Veerle
%T On minimal blocking sets of the generalized quadrangle $Q(4, q)$
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3466/
%R 10.46298/dmtcs.3466
%G en
%F DMTCS_2005_special_250_a75
Cimráková, Miroslava; Fack, Veerle. On minimal blocking sets of the generalized quadrangle $Q(4, q)$. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005). doi : 10.46298/dmtcs.3466. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3466/

Cité par Sources :