Discrepancy of Products of Hypergraphs
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005).

Voir la notice de l'article provenant de la source Episciences

For a hypergraph $\mathcal{H} = (V,\mathcal{E})$, its $d$―fold symmetric product is $\Delta^d \mathcal{H} = (V^d,\{ E^d | E \in \mathcal{E} \})$. We give several upper and lower bounds for the $c$-color discrepancy of such products. In particular, we show that the bound $\textrm{disc}(\Delta^d \mathcal{H},2) \leq \textrm{disc}(\mathcal{H},2)$ proven for all $d$ in [B. Doerr, A. Srivastav, and P. Wehr, Discrepancy of Cartesian products of arithmetic progressions, Electron. J. Combin. 11(2004), Research Paper 5, 16 pp.] cannot be extended to more than $c = 2$ colors. In fact, for any $c$ and $d$ such that $c$ does not divide $d!$, there are hypergraphs having arbitrary large discrepancy and $\textrm{disc}(\Delta^d \mathcal{H},c) = \Omega_d(\textrm{disc}(\mathcal{H},c)^d)$. Apart from constant factors (depending on $c$ and $d$), in these cases the symmetric product behaves no better than the general direct product $\mathcal{H}^d$, which satisfies $\textrm{disc}(\mathcal{H}^d,c) = O_{c,d}(\textrm{disc}(\mathcal{H},c)^d)$.
@article{DMTCS_2005_special_250_a72,
     author = {Doerr, Benjamin and Gnewuch, Michael and Hebbinghaus, Nils},
     title = {Discrepancy of {Products} of {Hypergraphs}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)},
     year = {2005},
     doi = {10.46298/dmtcs.3463},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3463/}
}
TY  - JOUR
AU  - Doerr, Benjamin
AU  - Gnewuch, Michael
AU  - Hebbinghaus, Nils
TI  - Discrepancy of Products of Hypergraphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3463/
DO  - 10.46298/dmtcs.3463
LA  - en
ID  - DMTCS_2005_special_250_a72
ER  - 
%0 Journal Article
%A Doerr, Benjamin
%A Gnewuch, Michael
%A Hebbinghaus, Nils
%T Discrepancy of Products of Hypergraphs
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3463/
%R 10.46298/dmtcs.3463
%G en
%F DMTCS_2005_special_250_a72
Doerr, Benjamin; Gnewuch, Michael; Hebbinghaus, Nils. Discrepancy of Products of Hypergraphs. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005). doi : 10.46298/dmtcs.3463. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3463/

Cité par Sources :