Improving the Gilbert-Varshamov bound for $q$-ary codes
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005).

Voir la notice de l'article provenant de la source Episciences

Given positive integers $q$, $n$ and $d$, denote by $A_q(n,d)$ the maximum size of a $q$-ary code of length $n$ and minimum distance $d$. The famous Gilbert-Varshamov bound asserts that $A_q(n,d+1) \geq q^n / V_q(n,d)$, where $V_q(n,d)=\sum_{i=0}^d \binom{n}{i}(q-1)^i$ is the volume of a $q$-ary sphere of radius $d$. Extending a recent work of Jiang and Vardy on binary codes, we show that for any positive constant $\alpha$ less than $(q-1)/q$ there is a positive constant $c$ such that for $d \leq \alpha n, A_q(n,d+1) \geq c \frac{q^n}{ V_q(n,d)}n$. This confirms a conjecture by Jiang and Vardy.
@article{DMTCS_2005_special_250_a65,
     author = {Vu, Van H. and Wu, Lei},
     title = {Improving the {Gilbert-Varshamov} bound for $q$-ary codes},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)},
     year = {2005},
     doi = {10.46298/dmtcs.3456},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3456/}
}
TY  - JOUR
AU  - Vu, Van H.
AU  - Wu, Lei
TI  - Improving the Gilbert-Varshamov bound for $q$-ary codes
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3456/
DO  - 10.46298/dmtcs.3456
LA  - en
ID  - DMTCS_2005_special_250_a65
ER  - 
%0 Journal Article
%A Vu, Van H.
%A Wu, Lei
%T Improving the Gilbert-Varshamov bound for $q$-ary codes
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3456/
%R 10.46298/dmtcs.3456
%G en
%F DMTCS_2005_special_250_a65
Vu, Van H.; Wu, Lei. Improving the Gilbert-Varshamov bound for $q$-ary codes. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005). doi : 10.46298/dmtcs.3456. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3456/

Cité par Sources :