Spanning paths in hypercubes
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005).

Voir la notice de l'article provenant de la source Episciences

Given a family $\{u_i,v_i\}_{i=1}^k$ of pairwise distinct vertices of the $n$-dimensional hypercube $Q_n$ such that the distance of $u_i$ and $v_i$ is odd and $k \leq n-1$, there exists a family $\{P_i\}_{i=1}^k$ of paths such that $u_i$ and $v_i$ are the endvertices of $P_i$ and $\{V(P_i)\}_{i=1}^k$ partitions $V(Q_n)$. This holds for any $n \geq 2$ with one exception in the case when $n=k+1=4$. On the other hand, for any $n \geq 3$ there exist $n$ pairs of vertices satisfying the above condition for which such a family of spanning paths does not exist. We suggest further generalization of this result and explore a relationship to the problem of hamiltonicity of hypercubes with faulty vertices.
@article{DMTCS_2005_special_250_a51,
     author = {Dvo\v{r}\'ak, Tom\'a\v{s} and Gregor, Petr and Koubek, V\'aclav},
     title = {Spanning paths in hypercubes},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)},
     year = {2005},
     doi = {10.46298/dmtcs.3442},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3442/}
}
TY  - JOUR
AU  - Dvořák, Tomáš
AU  - Gregor, Petr
AU  - Koubek, Václav
TI  - Spanning paths in hypercubes
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3442/
DO  - 10.46298/dmtcs.3442
LA  - en
ID  - DMTCS_2005_special_250_a51
ER  - 
%0 Journal Article
%A Dvořák, Tomáš
%A Gregor, Petr
%A Koubek, Václav
%T Spanning paths in hypercubes
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3442/
%R 10.46298/dmtcs.3442
%G en
%F DMTCS_2005_special_250_a51
Dvořák, Tomáš; Gregor, Petr; Koubek, Václav. Spanning paths in hypercubes. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005). doi : 10.46298/dmtcs.3442. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3442/

Cité par Sources :